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Since the discovery that patients with damage to the prefrontal cortex (PFC)
show similar deficits in cognitive control as young children, the PFC model of
cognitive control development has been a popular description of how cognitive
control emerges over time. In this review, we show that not only do many
studies support this model, but also that more specific models of PFC devel-
opment can be formulated, according to the functional roles of subregions and
by taking into account the distinctions within ventral–dorsal and lateral–medial
PFC. We also reveal that the functional development of dorsolateral PFC
supports the development of deliberative processes, whereas that of the
medial PFC supports the development of internalized decisions. These new
conceptualizations may provide better descriptions of the complexity of
cognitive control development.

The Prefrontal Cortex Hypothesis of Cognitive Control Development
Cognitive control refers to the ability to control our thoughts and actions for the purpose of
future goals. Over the past decades, a wealth of results has shown that the ability to exert
cognitive control increases from early childhood to late adolescence [1,2]. These improvements
can be observed across a range of tasks, such as working memory, inhibition, and making
complex decisions between options varying in their associated costs and benefits [2,3]. A key
question is how different cognitive control functions develop with respect to one another. For
example, using latent class models (see Glossary), it was observed that working memory
shows a more protracted developmental time course compared with cognitive switching and
inhibition [4]. Recent studies in cognitive neuroscience have made important progress in
understanding how cognitive control functions rely upon overlapping and different neural
regions and processes.

Ever since the discovery that patients with damage to the PFC show deficits in cognitive
control [5,6], many theoretical models have suggested that cognitive control development is
closely tied to the development of the PFC [1,7,8]. Subsequent and increasingly refined
models have taken the heterogeneity of the PFC into account and suggest that the develop-
mental time course of separable cognitive control functions is related to the maturation of
subregions of the PFC [9]. This hypothesis was tested more directly in recent years with
the rise of in vivo brain-imaging methods, including fMRI [10,11], which have consistently
shown that the PFC is important for cognitive control in adults [12–14] and were applied to
aid our understanding of the neural basis of cognitive control development in children and
adolescents.

Trends
Developmental patterns of activation in
PFC in response to cognitive control
tasks have shown a remarkable and
unexplained heterogeneity.

Conventional classifications of cogni-
tive control (i.e., basic versus complex)
can be extended to rule-based versus
internalized processes.

Novel classifications of cognitive con-
trol can offer a new perspective for
accounting for specific developmental
patterns of findings.
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Developmental neuroimaging studies initially focused on mapping single cognitive control
functions to the maturation of specific areas within the PFC. For example, a large literature
on working memory development has demonstrated that increases in working memory
performance during adolescent development are related to stronger recruitment of the
dorsolateral and ventrolateral PFC [15–17]. Inhibitory control is also often mapped to increased
activity in the PFC with increasing age [18,19]. Furthermore, error monitoring was linked to
increased activity in the anterior cingulate cortex [20,21]. Taken together, a large body of
literature points to developmental changes in the neural recruitment of the PFC, consistent
with the hypothesis of a functional role of protracted PFC maturation in the development of
cognitive control.

However, the complexity of these neurodevelopmental patterns is highlighted by the hetero-
geneous responses elicited by variations in tasks and approaches across studies and how
these inform about the significance for performance. For example, whereas some studies
report increased activation with age in specific regions, others find age-related decreases in
activation in other regions [22–24], and it is currently not clear how this is mapped to
performance changes. One of the largest studies in the developmental neuroimaging literature
tested how developmental progression in working memory [379_TD$DIFF]updating performance related to
neural activity in dorsolateral PFC (N=951, ages 8–22 years) [15]. This study reported that
activity increase in dorsolateral PFC mediated the relation between age and performance,
explaining 38% of the shared variance of age and performance [15]. Many studies have
confirmed that neural activity increases are related to performance improvements across
the domains of working memory [17], inhibition [25], feedback learning [26], and delay of
gratification [27,28]. However, studies reporting age-related decreases in neural activity have
also linked these to behavior progressions [24], showing that both decreases and increases
can be meaningfully linked to developmental changes in cognitive control. So far, there have
been few systematic reviews of what this could mean [398_TD$DIFF](see also Box 1). Children may be using
different strategies compared with adults, which is associated with different patterns of neural
activity. In this review, we suggest that new conceptualizations of cognitive control and
mapping these to subregions within PFC may inform about the way that different types of
cognitive control are developing.

Here, we provide two perspectives on cognitive control development, each offering several
interpretations of the current literature of how constructs of cognitive control are represented in
the human brain: (i) basic, stimulus-driven versus complex, deliberative cognitive control
functions [29,30]; and (ii) rule-based versus internalized cognitive control [31,32]. These are
discussed with view to providing a starting point for a better understanding of cognitive control
development (Figure 1). Both perspectives take the complexity of cognitive control as a
multifaceted construct into account, and make separable predictions about the patterns of
change over development, although these are not complete dichotomies and some overlap will
exist between the concepts. As we discuss, these conceptualizations constitute a powerful
approach to synthesizing divergent patterns of results into a potentially unifying theoretical
framework.

A Hierarchical Representation (Basic to Complex) of Cognitive Control
Researchers often conceptualize cognitive control by dividing it into several subprocesses
[33,34]. This approach is based on the assumption that cognitive control is an umbrella term for
several different executive functions. The basic executive functions comprise working memory,
inhibition, cognitive flexibility, and error monitoring [1], which are thought to be supported by
different underlying neural regions within the PFC, and each have separate developmental time
courses [9]. These processes need to work well in concert, thereby contributing to performance
in more complex cognitive control tasks [29]. Complex executive function tasks rely more on

Glossary
Delay discounting: the monotonic
decline in reward value with an
increased time delay of its receipt
(i.e., choice outcomes are
reweighted to take the delay into
account).
Interference control: the
suppression of responses that are
triggered by competing events and
responses.
Latent class models: models that
rely on a statistical method for
identifying unmeasured class
membership among observed
variables.
Latent variables: variables that are
not directly observed but can be
inferred through a mathematical
model based on other variables that
are observed.
Response inhibition: the
suppression of habitual behavioral
actions, which supports flexible and
goal-directed behavior
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deliberative processes than do basic, stimulus-driven processes. Deliberative cognitive control
refers to processes that are potentially prone to strategy use (i.e., planning [399_TD$DIFF], emotion regulation,
and feedback learning) [35].

Research to date has focused mainly on the developmental time course of basic and
complex cognitive control functions separately. Working memory is often studied using delay
or span tasks, and these studies consistently report improvements in performance until
late adolescence [36], especially for tasks that require updating [37]. For response inhibition
(i.e., go/nogo tasks and stop-signal inhibition tasks) or interference control tasks (i.e.,
flanker or Simon tasks), improvements are reported during childhood, but no large additional
improvements are observed during adolescence [4,38]. Cognitive flexibility is often examined
using task-switching paradigms, which report improvements until early adolescence [4,39].
Finally, error monitoring is an internal process that does not result in an immediate behavioral
output, but studies have examined post-error slowing as an index of the maturation of error
monitoring. Studies have reported that young children (from the age of 7 years) already show
evidence for post-error slowing [40]. Other studies revealed developmental decreases in post-
error slowing, suggesting that more efficient error monitoring occurs as children get older [41].
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Figure 1. Overview of Proposed Distinctions within Prefrontal Cortex (PFC). (A) Conceptual overview of the distinctions within PFC related to basic and
complex and/or deliberative processes, and rule-based (lateral) to internalized (medial) processes. (B) How different cognitive control tasks can be subdivided along
these processes. Abbreviations: dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; vlPFC, ventrolateral prefrontal cortex; vmPFC,
ventromedial prefrontal cortex.
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Using the unity and diversity model suggested by Miyake et al. [29], it has been tested whether
latent variables derived from a battery of basic executive function tasks predicted perfor-
mance on more complex cognitive control tasks that rely on a mixture of basic executive
functions, such as performance on the Wisconsin Card Sorting Task (WCST) or the Tower
of London Task (ToL). Indeed, there was some evidence that the development of working
memory contributed to performance on the WCST and the development of interference
control contributed to performance on the ToL [4,42–44]. It should be noted that the unity
versus diversity model is focused primarily on cognitive functions and devotes less attention
to affective control processes. Prior studies have suggested that cognitive and affective
components of cognitive control have dissociable developmental trajectories [2], and that
basic executive functions, such as inhibition, also contribute to complex tasks, such as
economic decision-making (e.g., delay discounting) [28].

What are the implications of the above results for the basic–complex distinction for under-
standing the neural development that supports cognitive control development? One assump-
tion based on the behavioral data is that neural activity in brain regions that are typically
associated with the basic executive functions (working memory, inhibition, cognitive flexibility,
and error monitoring) in adults should show increases in recruitment, as children get older. Prior
research in adults points to a role of the ventrolateral and dorsolateral PFC supporting working
memory performance [14]. Inhibitory control is often linked to the right inferior frontal gyrus and
dorsolateral PFC based on patient research and functional neuroimaging studies [13,45] (but
see [46] for recent debates on the precise locus of inhibitory control). Finally, cognitive flexibility
is mostly related to activity in the pre-supplementary motor area and the inferior frontal junction
[47,48] and error monitoring to the anterior cingulate cortex [49].

Developmental studies have subsequently tested whether these regions show protracted
functional maturation during child and adolescent development. Developmental fMRI studies
show most consistent patterns for working memory development. Working memory updating
in particular has been consistently related to increases in dorsolateral PFC across studies
throughout adolescence [15,17,50–53]. Likewise, there are consistent findings for error moni-
toring showing developmental increases in activity in the anterior cingulate cortex and medial
PFC, especially between childhood and early adolescence [20,21,40]. Less consistency is
observed in studies that examined the development of response inhibition and switching, both
in the direction (i.e., age-related increases and decreases) as well as the regions involved (e.g.,
[20,22,54,55]). It might be that younger children call upon more diverse processes to perform
well on these tasks.

The second assumption of the basic–complex model is that improvements in complex
cognitive control tasks rely on the same regions as the basic executive functions that underlie
these complex processes, and that there is a larger concomitant increase between PFC
regions as children grow up. Given the variability in the developmental results from the basic
executive function tasks, it is difficult to relate these directly to activity during more complex
cognitive control tasks. Nonetheless, the general pattern suggests that neural activity during
more complex cognitive control tasks shows age-related increases in multiple PFC regions.
These developmental increases were observed in research using feedback-learning task
(mirroring the WCST) [26,56], relational reasoning [57,58], delay of gratification [27,28,59],
and emotion regulation [60,61].

We visualized the developmental progressions in cognitive [400_TD$DIFF]control according to this distinction
(Figure 2). Figure 2A presents a categorization of cognitive control processes in terms of basic
and complex deliberative processes. Both behavioral and neural studies report that deliberative
processes have a more protracted developmental trajectory compared with basic cognitive
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control processes. Developmental improvements in response inhibition [4], task switching [39],
error monitoring, and probability updating [62] are typically observed until late childhood and/or
early adolescence. By contrast, developmental improvements in workingmemorymanipulation
[36,63], delay discounting [64], emotion regulation [61], and feedback learning [63] are
observed throughout adolescence until early adulthood.

Some studies also show decreases with increasing age, mostly in dorsal regions, andmainly for
basic processes, such as response inhibition andworkingmemorymaintenance [19,22,23,54].
This might indicate that young children use additional strategies in basic tasks more often than
do adults (i.e., recruit dorsal regions associated with deliberative processes for a stimulus-
driven task) to compensate for potential capacity limitations. Alternatively, a new conceptuali-
zation of how cognitive control can be divided in subprocesses may help in understanding the
developmental time courses of these functions ( [401_TD$DIFF]Fig. 1).

Rule-Based versus Internalized Cognitive Control
An alternative way in which cognitive control processes can be distinguished is based on the
extent to which the processes are rule-based or internalized decision processes. With rule-
based processes, we refer to the cognitive processes that rely on specific predefined rules or
instructions. By contrast, internalized processes refer to those decisions where there is no
specific instruction, and choices are based on internal deliberations. Examples of internal
deliberations are ‘deciding to restrain from acting on impulses’ (i.e., safe decision-making or
delay of gratification), or ‘updating values based on prior experiences’ (prediction updating or
error monitoring). Several theoretical models based on brain-imaging data in adults show that
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Figure 2. Overview of Empirical Findings in Prefrontal Cortex (PFC). An overview of increases and decreases in activity based on studies that are presented in
this review, according to the distinctions presented in Figure 1 (main text). Studies that show age-related increases (blue) or decreases (red) in (A) basic (left [15–18,20–
25,48,50–55,95–101]) and complex (right [26–28,56,57,59–62,68–73,75,102–104]) cognitive control tasks and in (B) rule-based (left [15–18,20,22–26,48,50–57,60–
62,95–100,102–104]) and internalized, choice-based (right [20,21,27,28,59,68–73,75,101]) cognitive control tasks. Increases are presented as + (blue) and decreases
as � ( [395_TD$DIFF]red). In cases where there was a change in connectivity reported, a [396_TD$DIFF] is used. Nonlinear patterns are displayed as ‘^’. The bar graphs present relative increases
and decreases according to lateral (coordinates outside x=�15 and x=15) and medial (coordinates within x=�15 and x=15) regions, for ventral and dorsal PFC. The
ventral and dorsal distinction was based on the way in which this was presented in the specific studies. In cases where studies reported multiple activity foci within one
brain area, the onewith the largest intensity was plotted on the cartoon brain. Given that some studies overlapped, the activitiesmay differ slightly from the location in the
original paper for visibility and clarity of this figure.
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rule-based cognitive control relies on lateral prefrontal regions, whereas internalized control
relies on medial regions, as recruited by intentional decisions [32], tracking motivation of others
[65], or internal processing of emotions [30]. It is assumed that, for example, the medial frontal
cortex (specifically the dorsal anterior cingulate cortex) monitors our environment for task
difficulty, and signals the lateral PFC when control needs to be exerted [31].

Following this lateral–medial distinction, Figure 2B presents a categorization of cognitive control
processes in terms of rule-based and internalized processes. Whereas rule-based processes

Box 1. On the Significance of Neural Activation for Behavior

An interesting question concerns the issue of developmental change in neural activity that is unrelated to task
performance. For example, several studies reported additional change in neural activity related to age, while keeping
performance constant [87] or when accounting for performance [88]. One possibility is that these neural activities
represent a certain readiness for change. For example, even when a child is performing at level x, this child may be more
likely to make the transition soon to progress to level x+1 compared with another child who also performs at level x
(Figure I). This idea of readiness is well conceptualized in the developmental psychology literature that describes
children’s task performance in the overlapping waves theory. This theoretical framework shows that children may have
several strategies available and differ in the strategy that they use [89,90]. Children who show stronger neural activity
during task performance may have more strategies available, or may be more likely to progress to the next (more
advanced) strategy soon, despite showing currently similar performance levels as children who have fewer strategies
available. Some evidence for this assumption comes from longitudinal studies that show that stronger activity in PFC at
a first time point is predictive for longitudinal improvement in cognitive performance from the first to the second time
point, over and above behavioral measures [91].
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Controlled for strategy group
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Readiness for change
Neural ac�vity

Performance level 2

T
4.6 10

Peters et al.,2014(A)

(B)

Figure I. Brain Regions [377_TD$DIFF]That Show Age-Related Increases [378_TD$DIFF]When Controlling for Performance May Signal Potential for
Change. (A) Brain regions that show age-related changes when controlling for performance levels [397_TD$DIFF][88]. (B) An illustration
of how performance-corrected age-related activity may reflect ‘readiness’ for change to the next performance level.
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are associated with developmental increases in both medial and lateral regions of the PFC,
internalized processes are associated with changes mainly in medial regions of the brain.
Interestingly, the studies that reported age-related changes in neural activity in lateral regions
only did so for connectivity findings (circles in Figure 2). The changes in connectivity are related
to connectivity with ventromedial PFC [28], and the ventral striatum [27,59]. Thus, similar to the
basic and complex and/or deliberative distinction, there appears to be an early functional
specialization in PFC areas to support processes of rule-based and internalized cognitive
control, albeit on a gradient from lateral to medial regions. Both rule-based and internalized
cognitive control processes show developmental changes over time in behavioral tasks, such
as protracted development of both rule-based working memory manipulation [36,66] and
internalizing delay discounting [64] or giving trust [67], but these behavioral patterns are
possibly associated with the maturation of different regions within the PFC (Box 2).

The distinction between dorsomedial and ventromedial PFC deserves additional attention.
Cognitive control processes that are associated with changes in dorsomedial PFC consistently
show increases in activity related to trust [68], delay of gratification [69], and error monitoring
[20,21]. However, age-related changes in ventromedial PFC show a less-consistent pattern. In
this region, age-related increases are observed in activity and connectivity for updating of
decision-making parameters [70–72] and delay of gratification choices [28,59]. However, some
studies also report age-related decreases in neural activity, specifically decreases are observed
for trust [68], reciprocity [73], refraining for risk taking [74], and positive prediction errors [75].

It has recently been argued that ventromedial PFC supports highly complex functions, such as
valuation, affect regulation, and social cognition [76]. Given that the studies reporting both
increases and decreases in activity (delay discounting, trust, and feedback updating) used
paradigms that are related to social and affective cognitive control, this possibly indicates that
ventromedial PFC is, in some cases, more active in adolescent participants because these
signals have different personal value to them [77]. Social-affective learning signals may bemore
significant for children and young adolescents, whereas cognitive-affective learning signals are
possibly more significant for older adolescents and adults [78].

Connectivity and Functional Specialization of Prefrontal Cortical Regions
It would be simplistic to assume that there is a general maturational pattern, driven by a
predetermined maturational time course across childhood and adolescence, of such a large
and heterogeneous brain area as the PFC. Behavioral developmental studies also consistently
show that not all cognitive control functions develop at the same pace. It is more likely that
developmental changes, especially in higher-level cognitive skills, result from interactive spe-
cialization within the PFC and its connections to other regions in the brain [79]. Therefore, there
is a need for a better conceptual understanding of how cognitive control development is
associated with functional changes in the PFC and collaborating brain regions.

Box 2. Linking Brain Structure and Brain Function

Recently, studies of the development of cognitive control have begun to combine both functional and structural data.
Such approaches follow from the assumption that brain function is rooted in the anatomy and connectivity of a specific
brain structure (for two recent demonstrations of this in fusiform face and visual form area, see [92,93]). In one study,
age-related changes in structural connectivity between the striatum and the right dorsolateral PFC predicted the extent
of functional connectivity between these two regions, which in turn accounted for developmental differences in delay
discounting [27]. By contrast, recent studies combining cortical thickness and functional activation showed that
developmental differences in each contributed unique portions of variance in explaining social behaviors that rely
on inhibitory control [94]. This suggests that structural and functional connectivity are more tightly coupled than are
anatomy and functional activation. Combining brain structure and function in explaining the emergence of cognitive
control constrains what might be expected in terms of the associated variability in task-related activation patterns.
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Several studies have made use of advanced data-driven methods to discover meaningful
connectivity patterns in the developing brain [80,81]. Dosenbach et al. introduced this analysis
based on resting-state connectivity patterns [82,83]. They distinguished between a network
that was defined as the cingulo-opercular network, and a network that was defined as the
frontoparietal network. These networks were associated with set maintenance and control
adjustment, respectively, which builds upon the idea that the medial frontal cortex monitors for
internalized task processes and sends signals to the lateral PFC to signal task adjustment [31].
Using advanced resting-state connectivity analyses (including graph theory and hierarchical
clustering, and using independent component analyses), Dosenbach et al. reported support for
this distinction, but argued that these regions are hubs in a much larger network involved in the
maintenance of task setting and the adjustment of control. Interestingly, the network analyses
showed differential development of set-maintenance networks and task adjustment networks.
Our review suggests that the development of functional distinctions in the PFC in response to
cognitive control tasks differing in the extent to which they draw on rule-based versus
internalized processes is already present at least in middle childhood and undergoes further
functional refinement with age.

Concluding Remarks and Future Directions
Here, we have explored new ways of categorizing developmental progressions in cognitive
control during childhood and adolescence. We have argued that neural activity patterns
provide insight into how children and adolescents perform tasks, thereby informing the
formulation of more sophisticated models of cognitive control development.

By starting with a basic–complexmodel [29,43,44], we showed that behavioral performance on
tasks that rely on complex deliberative processing has a more protracted development
compared with basic stimulus-driven performance. This pattern was associated with a more
protracted development of dorsolateral PFC in terms of activity, structure, and connectivity to
other regions in the cortex. Interestingly, patterns weremost consistent (i.e., showed consistent
increases throughout childhood and adolescence) when the tasks relied on complex delibera-
tive processes, whereas tasks that relied on basic, stimulus-driven processes showed a more
complex pattern of increases and decreases in different regions of PFC. One possibility is that
younger children use compensatory strategies when they perform stimulus-driven tasks. Basic
stimulus-driven tasks may require more strategy compensation than was previously believed.

Additionally, there was convincing evidence for a distinction between rule-based and internal-
ized decision processes, such that internalized decision processes in particular were associ-
ated with activity changes in medial PFC. The lateral–medial distinction has only recently
received more attention in developmental cognitive neuroscience, with reviews focusing on
internalized inhibition processes [84] and mentalizing processes [85]. This will be a fruitful
avenue to explore in future, especially given that the patterns of increases and decreases in
ventromedial PFC show the most protracted time courses and task-dependent patterns of
change. It is likely that this is associated with the connections that this area has with subcortical
brain regions, which show dramatic changes during adolescence [86].

A challenging but critical task for the future will be to decompose executive functions to
understand not only their developmental time courses, but also how children and adolescents
are capable of combining these skills to predict high-stake behaviors, such as performingwell in
school, planning their future, and developing meaningful social relationships.
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